
Computability and Computational Complexity, A.Y. 2019–2020

Solution outlines to the written exam
Mauro Brunato

Wednesday, January 15, 2020

Exercise 1
Consider the following language in {0, 1}∗:

K = {0n1n : n ∈ N} = {ε, 01, 0011, 000111, 00001111, 0000011111, . . . }

i.e., all strings composed by a sequence of zeroes followed by the same number of ones.
1.1) Write a single-tape Turing Machine with alphabet Σ = { , 0, 1} that recognizes K.
1.2) Prove or disprove the decidability of each of the following properties of TMs:

P1 = {M : M decides K},
P2 = {M : M decides K in less than 100 steps},
P3 = {M : M decides K ∩ Σ100 (i.e., strings in K not longer that 100 symbols)}.

For 1.1 use any notation you like, and encode acceptance and rejection as you prefer (0/1 on
tape, two different halting states, etc.).

Solution 1

1.1) The simplest, although, not the most efficient, machine just keeps erasing the leftmost 0
and the rightmost 1 until the input is empty or some unexpected symbol appears (e.g., leftmost
1, righmost 0, blank when a 1 should be erased).
We assume that the input is a contiguous string of 0’s and 1’s, surrounded by blanks, and that
the machine starts on the leftmost input symbol. Here is the transition table:

0 1
erase-leftmost-0 /→/accept /→/go-right 1/→/reject

go-right /←/erase-rightmost-1 0/→/go-right 1/→/go-right
erase-rightmost-1 /←/reject 0/←/reject /←/go-left

go-left /→/erase-leftmost-0 0/←/go-left 1/←/go-left

An encoding suitable for the TM simulator seen in class1 is:

erase-leftmost-0 0 _ r go-right ; found and erased a 0
erase-leftmost-0 1 1 r halt-reject ; unexpected 1
erase-leftmost-0 _ _ r halt-accept ; the input has been consumed

go-right 0 0 r go-right ; keep skipping the input
go-right 1 1 r go-right

1http://morphett.info/turing/turing.html

go-right _ _ l erase-rightmost-1 ; found the end of the input

erase-rightmost-1 1 _ l go-left ; found and erased a 1
erase-rightmost-1 0 0 l halt-reject ; unexpected 0
erase-rightmost-1 _ _ l halt-reject ; unexpected blank

go-left 0 0 l go-left ; keep skipping the input
go-left 1 1 l go-left
go-left _ _ r erase-leftmost-0 ; found the beginning of the input

The same machine as an automaton form:

erase-leftmost-0start

go-right

go-left

erase-rightmost-1

accept

reject

/ ,→

0/ ,→

1/1,→

/ ,←

0,1/*,→

0, /*,←

1/ ,←/ ,→

0,1/*,←

1.2)

• Property P1 is clearly semantic (M ∈ P1 ⇔ L(M) = K) and is not trivial (there is
at least one machine that decides K and at least one that doesn’t); therefore, by Rice’s
Theorem, it is undecidable.

• A TM limited to 100 steps cannot decide K. Consider, e.g., the string s1 = 0100011000 ∈
K. A TM limited to 100 steps wouldn’t be able to read the whole input, therefore it
wouldn’t be able to tell s1 from s2 = 0100011001 ̸∈ K. Therefore, P2 = ∅, hence it is
trivially computable by a TM that always rejects.

• Again, P3 is semantic and non-trivial, thus uncomputable.

Observations
• Many other TMs are possible for 1.1.

• Observe that, since 1.1 requires the TM to just recognize K, rejection could be replaced
by a non-halting computation.

• As usual, there is a significant distinction between the computability of K and the com-
putability of the property “This machine decides K”.

• Property P2 doesn’t just require the TM to halt after 100 steps, but also to decide K.
Therefore, simulating the TM for 100 steps isn’t enough: we also need to consider which
inputs it should be simulated on.

• The fact that the language defining P3 is finite doesn’t matter: Rice’s theorem is still
valid, because we wouldn’t be able to always assert whether a TM would halt or not.

Exercise 2
Prove that K, the language defined in Exercise 1, belongs to the complexity class L.
While 1.1 required a single-tape machine, class L has a different assumption. Here, however,
you are not asked to write down the TM: just a few lines of pseudocode will do.

Solution 2
Since L = DSPACE(log n), we need to describe an algorithm whose additional space is loga-
rithmic wrt the input’s size.
For instance, consider a 2-tape TM implementation of the following algorithm:

function K (x)
c← 0
while next input symbol in x is 0

c← c+ 1
while next input symbol in x is 1

if c = 0
reject and halt

c← n− 1
if next input symbol in x is and c = 0

accept and halt
else

reject and halt

The machine allocates a counter c in its working tape, initialized with 0, and scans the input: as
long as it finds zeroes, it increases c; then as long as it finds ones, it decreases it. It fails when
finding a zero following a one, or when c falls below zero (underflow), or if c is nonzero at the
end of the input.
The function is clearly implementable on a two-tape TM, and just the counter c needs to be
stored in the working tape. Observe that in the worst case c is increased once per input symbol,
therefore its value is never larger that |x|, so it requires at most ⌈log2 |x|⌉ = O(log |x|) binary
digits.

Observations
• Remember: we talk about logspace, not time.

• Using more than one counter and an index to scan the input is fine, as long as we use a
constant number of O(log |x|)-bit variables.

Exercise 3
Let L1, L2 ∈ NP. Does L1 ∪ L2 ∈ NP? Does L1 ∩ L2 ∈ NP? Why?
Be as formal as you can, e.g.: “Since L1 ∈ NP, then there is a TMM1 such that. . . ”

Solution 3
Since L1 ∈ NP, then there is a NDTM N1 that decides L1 in polynomial time. Same for L2.
Given input x, to decide whether x ∈ L1 ∪ L2 we just need a NDTM that accepts x whenever
N1 or N2 accepts it:

• Store x for future use.

• Run N1 on input x. If N1 accepts, then accept and halt.

• Restore input x.

• Run N2 on input x.

This machine runs in time that is, in the worst case, the sum of the times of N1(x) and N2(x)
plus the time to copy and restore x, therefore it is polynomial in |x|.
Likewise, to decide whether x ∈ L1 ∩ L2 we need a NDTM that accepts x whenever N1 and
N2 accepts it:

• Store x for future use.

• Run N1 on input x. If N1 rejects, then reject and halt.

• Restore input x.

• Run N2 on input x.

The worst-case runtime is the same of the previous machine.

Observations
• The fact that L1 ∩L2 is (in some sense) “smaller” than both L1 and L2 doesn’t mean that

it is “easier”, nor that L1 ∪ L2 is “harder”.

• Also remember that the exercise doesn’t cite completeness.

Exercise 4
Consider the following classical NP-complete languages:

CLIQUE = {(G, k) : Undirected graph G has a completely connected subgraph of size k},
INDSET = {(G, k) : Undirected graph G has a completely disconnected subgraph of size k}.

4.1) Describe a polynomial-time reduction from one language to the other.
4.2) Show that CLIQUE ∩ INDSET ̸= ∅.
For 4.1, choose the direction you like. In 4.2, don’t be afraid of simple answers: to show that a
set is not empty, you just need to find an element in it.

Solution 4

4.1) See the notes: G = (V,E) has a clique of size k if and only if Ḡ = (V, Ē) (same vertex
set, complementary edge set) has an independent set of the same size.
4.2) We need to show that there is a graph G and an integer k such that G has both a clique of
size k and an independent set of size k. Just take any nonempty graph G and k = 1:

(G, 1) ∈ CLIQUE ∩ INDSET.

Observations
• Any example is OK, provided that the same graph contains both a k-clique and a k-indset

for the same value of k.

• CLIQUE and INDSET are languages, in this case sets of instances in the form (G, k): to
show that their intersection is not null, we must show that the same instance belongs both
to CLIQUE and INDSET.

